久久综合网hezyo_天堂成人av_黄色成人在线网_五月天丁香久久

技術文章

您的位置

首頁 技術文章

Gamry電化學工作站:電化學石英晶體微天平研究生物膜的形成

點擊次數:4551 更新時間:2017-08-04

Gamry電化學工作站:電化學石英晶體微天平研究生物膜的形成

Introduction

Biofilms are microbes attached to a surface. The  microbes form a film on the surface, giving rise to the name biofilm. This Application Note deals specifically  with bacterial biofilms that convert chemicals to  electrical current on electrodes. Because of this   function, we refer to them as electrochemically active biofilms (EABs). Interest in EABs ranges from their function as bioanodes and biocathodes in microbial fuel cells to new types of biosensors as well as novel biosynthesis of sustainable chemicals.

This application note shows results for Geobacter sulfurreducens, an oxygen-intolerant species of bacteria able to grow on  electrodes.1

If you are not familiar with quartz-crystal microbalances, see our Application Note “Basics of a quartz crystal microbalance”.

Experimental Notes

Culturing of G. sulfurreducens biofilms is not discussed in this Application Note. G. sulfurreducens is a non- pathogenic  BSL-1  biological agent.

Unlike typical electrochemical experiments, current  must be collected over several days to give time for the biofilm to grow. Choose an appropriate sampling rate, such as one measurement every five minutes. We show only one day of  growth.

Gamry’s  jacketed  EuroCell™  Electrochemical  Cell  Kit was used as the reactor vessel. An eSorptionProbe (Part No. 971-18) with 10 MHz Au-coated crystals  was  used.  A saturated Ag/AgCl electrode was used as  reference.

All parts of the reactor vessel were sterilized prior to biofilm growth.2  The assembled reactor vessel  was therefore sterile. Biological growth medium was then added. Oxygen was purged from the vessel using a gas mixture  of  20%  CO2   and  80%  N2.  The  electrode potential was then fixed to 0 VAg/AgCl using Gamry’s Framework™ software with the chronoamperometry script. A suspended cell culture of G. sulfurreducens was added and current was  recorded.

Results

Basics of biofilm growth

Figure 1. Photograph of biofilm grown on the 10 MHz Au-coated crystal for the  eSorptionProbe.

Biofilm can be grown on the Au-coated crystal (Figure 1). The pink hue on the Au surface is the biofilm. The biofilm is only found on Au because the electrode is the electron sink for the electrons generated from the  biofilm metabolizing acetate (a source of organic  carbon). In order to survive and grow, the biofilm must have an electron sink. As a result, surfaces such as the plastic coating that do not accept electrons show no biofilm growth.

The biofilm acts as a catalyst for the electrochemical conversion of acetate to carbon dioxide. The half-reaction above is an overall description of what happens in an individual cell in the biofilm. It does not account for carbon assimilation as biomass. The exact path through which electrons follow to reach the electrode surface is complex and not discussed in this Application Note.

For G. sulfurreducens biofilm, the acetate half-reaction is activated at electrode potentials more positive than approximay −0.4 VAg/AgCl. This  measured  value  is  true for most Au and C surfaces. Figure 2 shows the result of fixing the electrode potential to 0 VAg/AgCl in the presence of G. sulfurreducens cells and acetate. Cells that attach to the electrode form the initial biofilm.To survive, the initial biofilm metabolizes acetate and produces electrons.This produces an electron flow and is the cause of the increase in current in Figure 2.

Figure 2. Current output over time of a growing G. sulfurreducens biofilm. The electrode potential was fixed at 0 VAg/AgCl.

As the biofilm grows, current increases. In effect, the current output over time for EABs is a growth curve. Exponential growth can be easily checked by plotting the data in Figure 2 on a semilogarithmic plot (Figure 3). The initial region is the pre-exponential growth phase or lag phase. The linear region is exponential biofilm growth.

Figure 3. Semilogarithmic plot of current output over time. The linear region reflects exponential biofilm growth.

Standard practice is to confirm existence of the biofilm   by using scanning electron microscopy. Figure 4 shows a micrograph of the biofilm after fixation (standard procedure). The flat background is the bare Au surface. The biofilm was purposely removed to show the Au surface and biofilm in the same image.  The micrograph   is a visual indication that biofilm produced the current observed. If the biofilm is distinct like the pink hue in Figure 1, a photograph may be   sufficient.

Figure 4. Scanning electron micrograph of the biofilm on the Au-coated crystal after growth and a standard fixation procedure. After fixation, the biofilm is no longer alive. Single cells and multi-layered cell clusters are visible.

Biofilm voltammetry

During biofilm growth, the chronoamperometry script  can be stopped without damaging the biofilm. This is valuable for a simple voltammetric sweep. Usually cyclic voltammetry is the preferred script because of its simplicity. Figure 5 shows two cyclic voltammograms of    a growing biofilm (replicate) at 44 hours and 49 hours of growth. A catalytic wave is observed with several redox peaks superimposed between −0.33 VAg/AgCl  to  −0.23 VAg/AgCl. As the scan reached positive potentials, the effect of the redox peaks is minimized. In this potential region, limiting current is observed. The height of the catalytic wave increases with biofilm  growth.

 

Figure 5. Cyclic voltammograms of a G. sulfurreducens biofilm during growth. Scan rate was 30 mV/s. (Note that the chronoamperometry scan was stopped in order to run the cyclic voltammetry script.)

QCM frequency shift

Cell attachment and biofilm growth can be monitored in real-time using Gamry’s electrochemical quartz-crystal microbalance (eQCM). Using the Gamry Resonator™ software, both series frequency-shift (dFseries) and current can be recorded simultaneously. Figure 6 shows dFseries and Reduced Q (secondary y-axis) during   biofilm growth. This was recorded simultaneously with the current shown in Figure 2. The graphs are separated for clarity.

Figure 6. dFseries and Reduced Q over time decreasing in response to biofilm growth on the QCM. These data were taken simultaneously with the current data from Figure 2.

During the time it took the biofilm to reach a current output  of  40  µA  in  Figure  2,  dFseries  reached  −1250 Hz. Usually, for rigid films, dFseries can be converted to mass using the Sauerbrey Equation. However, the decrease in Reduced Q from 1500 to 1000 indicates a significant decrease in the rigidity of the biofilm. As a reference, a −1800 Hz dFseries shift during copper plating onto the QCM results in a minimal decrease in Reduced Q from 1280 to 1240. The important point is that it is typically incorrect to use the Sauerbrey  Equation to convert dFseries to mass for a biofilm, because of the biofilm’s viscous nature.

For most rigid film depositions using the eQCM, a plot of dFseries vs charge 一elds a straight line (for example, copper plating). In the case of G. sulfurreducens biofilm, this is not true.2 The reason is that charge passed does  not determine how much biofilm has grown on the electrode surface. For example, it is possible to have the total charge passed at the electrode increase with time without biofilm growth. Current passed over time is  more relevant for G. sulfurreducens biofilm because current is a proxy for biofilm growth. Figure 7 confirms this expectation and shows a linear correlation between dFseries and current.

Figure 7. dFseries vs. current (linear fit in   red).

Conclusions

This application note introduces electrochemically active biofilms to researchers outside of the field, and shows how the eQCM can be integrated into basic electrochemical techniques. It may also be useful to high school, undergraduate, or new graduate students who want to learn more about the techniques used to study electrochemically active biofilms. QCMs have a variety of uses in addition to monitoring biofilm growth:

•Chemical and biological sensors

•Electropolymerization

•Li+  intercalation

•Corrosion studies

•Electrodeposition

Gamry Instruments would like to acknowledge Dr.Jerome T. Babauta and Professor Haluk Beyenal of the Biofilms Research Group at Washington State University for the generation of these data.

Application Note Rev. 1.0 1/11/2016 Ó Copyright 2016 Gamry Instruments, Inc.

美國Gamry電化學關鍵詞:多通道電化學工作站,電化學工作站價格,石英晶體微天平,電化學工作站廠家,電化學工作站品牌
版權所有 總訪問量:420836 地址:上海市楊浦區逸仙路25號同濟晶度310室 郵編:200437
聯系人:客服 郵箱:jqiu@gamry.com
GoogleSitemap 技術支持:化工儀器網 管理登陸 滬ICP備15019588號-2
久久综合网hezyo_天堂成人av_黄色成人在线网_五月天丁香久久
欧美一级免费观看| 亚洲v日本v欧美v久久精品| 午夜精品福利在线| 欧美无乱码久久久免费午夜一区| 一色屋精品亚洲香蕉网站| 9久草视频在线视频精品| 亚洲精品乱码久久久久久日本蜜臀| 91在线一区二区| 日本美女一区二区三区视频| 在线欧美小视频| 日本美女视频一区二区| 精品国产亚洲在线| 一本久久a久久精品亚洲 | 色女孩综合影院| 日韩在线播放一区二区| 久久老女人爱爱| 欧美视频你懂的| 日韩—二三区免费观看av| 国产亚洲欧美日韩俺去了| 色婷婷久久一区二区三区麻豆| 免费成人av资源网| 中文字幕亚洲一区二区va在线| 欧美日韩国产高清一区二区| 国产精品一区二区果冻传媒| 五月婷婷综合网| 亚洲少妇屁股交4| 精品久久久久久久久久久久久久久| 丁香婷婷综合五月| 蜜桃传媒麻豆第一区在线观看| 亚洲人午夜精品天堂一二香蕉| 日韩精品专区在线影院重磅| 91国产精品成人| 国产精品一区一区| 丝袜美腿亚洲一区| **性色生活片久久毛片| 2020国产精品久久精品美国| 欧美三级在线视频| 99国产精品一区| 成人夜色视频网站在线观看| 久草在线在线精品观看| 热久久免费视频| 亚洲国产va精品久久久不卡综合| 日本一区二区久久| 欧美一区二区三区啪啪| 欧美性受xxxx黑人xyx性爽| 99re成人在线| a亚洲天堂av| 成人亚洲一区二区一| 国产高清精品久久久久| 国产剧情一区二区三区| 老司机一区二区| 久久国产剧场电影| 麻豆专区一区二区三区四区五区| 爽好多水快深点欧美视频| 亚洲国产欧美一区二区三区丁香婷 | 精品一区二区三区不卡| 看电视剧不卡顿的网站| 日本午夜精品视频在线观看| 爽爽淫人综合网网站| 日本 国产 欧美色综合| 免费久久精品视频| 精品一二三四在线| 高清国产午夜精品久久久久久| 乱一区二区av| 一本大道久久a久久精品综合| 国产精品一区二区三区乱码| 国产精品12区| 99久久er热在这里只有精品15| 91视频国产观看| 在线成人av网站| 久久精品人人做| 亚洲三级在线免费| 爽爽淫人综合网网站| 韩国在线一区二区| 99在线精品一区二区三区| 欧美亚一区二区| 欧美xxxxxxxx| 国产精品私人影院| 亚洲国产视频一区二区| 久久国内精品自在自线400部| 国产精品1区2区3区| 91在线一区二区| 日韩精品在线网站| 亚洲欧美中日韩| 日韩va亚洲va欧美va久久| 国产精品一区二区视频| 欧美中文字幕一区| 2021国产精品久久精品| 依依成人精品视频| 国产一区二区美女| 欧美午夜寂寞影院| 国产精品女主播av| 久久精品国产澳门| 在线视频亚洲一区| 久久久久久久综合狠狠综合| 一区二区三区91| 国产成人h网站| 日韩一区二区三区电影在线观看| 国产日韩精品视频一区| 亚洲第一福利视频在线| 国产69精品久久久久毛片| 欧美另类久久久品| 国产精品沙发午睡系列990531| 五月天欧美精品| 91免费看视频| 26uuu久久综合| 男人的天堂久久精品| 日本韩国欧美在线| 中文文精品字幕一区二区| 免费高清在线一区| 欧美日韩国产精选| 一区二区三区日韩| 91香蕉国产在线观看软件| 久久综合久久99| 精品一区二区三区免费观看| 欧美日韩激情一区| 亚洲欧美乱综合| 99精品国产热久久91蜜凸| 国产亚洲欧美日韩在线一区| 久久国产精品99久久人人澡| 制服.丝袜.亚洲.中文.综合| 亚洲一区视频在线观看视频| 一本久久精品一区二区| 18涩涩午夜精品.www| 成人avav在线| 国产精品二区一区二区aⅴ污介绍| 精品一区二区日韩| 日韩久久久精品| 狠狠色丁香婷综合久久| 久久嫩草精品久久久久| 看片的网站亚洲| 欧美精品一区男女天堂| 精品一区二区三区av| www国产精品av| 国产精品资源网| 欧美国产在线观看| a美女胸又www黄视频久久| 国产精品入口麻豆九色| 成人a级免费电影| 亚洲欧洲日产国码二区| 91网址在线看| 天堂影院一区二区| 欧美tk丨vk视频| 国产高清精品网站| 亚洲久本草在线中文字幕| 在线观看精品一区| 日本系列欧美系列| 国产三区在线成人av| aaa亚洲精品| 香港成人在线视频| 精品国产伦一区二区三区观看体验 | 国产精品欧美极品| 欧美在线免费播放| 麻豆91小视频| 中文字幕国产一区二区| 色综合久久久久| 免费亚洲电影在线| 国产精品毛片高清在线完整版 | 91免费看视频| 青青草国产成人av片免费| 精品国产髙清在线看国产毛片| 成人午夜视频网站| 夜夜亚洲天天久久| 日韩视频一区在线观看| 国产不卡免费视频| 日产欧产美韩系列久久99| 国产日产欧美精品一区二区三区| 色综合久久99| 国产精品88av| 日韩高清不卡一区| 国产精品久久久久一区二区三区 | 亚洲欧美影音先锋| 精品欧美久久久| 欧美影片第一页| 国产盗摄女厕一区二区三区| 亚洲电影在线播放| 国产欧美一区二区精品久导航| 欧洲中文字幕精品| 成人丝袜视频网| 国产精品综合网| 久久精品国产一区二区三区免费看| 国产精品国产a级| 久久久99精品免费观看不卡| 欧美日韩国产欧美日美国产精品| 成人综合激情网| 国产一区二区在线观看免费| 日本不卡一二三区黄网| 亚洲专区一二三| 亚洲欧美偷拍三级| 国产精品久久久久久久久动漫 | 色噜噜狠狠成人中文综合| 久久66热re国产| 欧美a级一区二区| 午夜精品久久久久影视| 亚洲曰韩产成在线| 亚洲素人一区二区| 中文字幕不卡在线播放| 久久精品人人做| 国产女主播视频一区二区| 欧美成人精品二区三区99精品|